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Abstract: The nonlinear local Lyapunov exponent (NLLE) method
is adopted to quantitatively determine the predictability limit of East
Asian summer monsoon (EASM) intensity indices on a synoptic
timescale. The predictability limit of EASM indices varies widely
according to the definitions of indices. EASM indices defined by
zonal shear have a limit of around 7 days, which is higher than the
predictability limit of EASM indices defined by sea level pressure
(SLP) difference and meridional wind shear (about 5 days). The
initial error of EASM indices defined by SLP difference and
meridional wind shear shows a faster growth than indices defined by
zonal wind shear. Furthermore, the indices defined by zonal wind
shear appear to fluctuate at lower frequencies, whereas the indices
defined by SLP difference and meridional wind shear generally
fluctuate at higher frequencies. This result may explain why the daily
variability of the EASM indices defined by zonal wind shear tends
be more predictable than those defined by SLP difference and
meridional wind shear. Analysis of the temporal correlation co-
efficient (TCC) skill for EASM indices obtained from observations
and from NCEP’s Global Ensemble Forecasting System_(GEFS)
historical weather forecast dataset shows that GEFS has a higher
forecast skill for the EASM indices defined by zonal wind shear than
for indices defined by SLP difference and meridional wind shear.
The predictability limit estimated by the NLLE method is shorter
than that in GEFS. In addition, the June-September average TCC
skill for different daily EASM indices shows significant interannual
variations from 1985 to 2015 in GEFS. However, the TCC for
different types of EASM indices does not show coherent interannual
fluctuations.

Key words: predictability at a synoptic timescale, East Asian
summer monsoon, nonlinear local Lyapunov exponent

1. Introduction

The East Asian summer monsoon (EASM) is an important
and unique component of the Asian summer monsoon system
(e.g., Chen and Chang, 1980; Tao and Chen, 1987; Ding et al.,
1992; Wang and Li, 2004). It is characterized by unique
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orographic forcing, involving huge thermal contrasts between
the largest global continent, Eurasia, and the largest ocean basin,
the Pacific. The EASM is also strongly influenced by the
Tibetan Plateau, which is the highest land feature in the world.
Floods and droughts associated with the EASM affect the
livelihoods of billions of people and infrastructure across East
Asia (EA) including China, Korea, and Japan (Huang et al.,
2002, 2003). The variation of the EASM intensity is closely
related to precipitation in EA (e.g., Li and Zeng, 2002; Huang
et al., 2004). Thus, improving the prediction skill of the EASM
intensity has great societal importance and economic value.
Many previous studies have examined the predictability and
prediction skill of the monthly- or seasonal-scale circulation
and rainfall of the EASM using numerical simulation. (e.g.,
Zeng, 1994; Sperber et al., 2001; Kang et al., 2002; Chang,
2004; Ding et al., 2004; Wang et al., 2004; Kang and Park,
2007; Wu and Li, 2008; Lee et al., 2010; Zhou and Zou, 2010;
Ding et al., 2013). For example, Lee et al. (2010) used two
climate forecast models (the NCEP Climate Forecast System
and the Australia Meteorology Research Center Predictive
Model) to investigate deficiencies and potential for predicting
EASM precipitation and circulation one or two seasons ahead.
Their results showed that both coupled models have difficulty
in predicting summer mean precipitation anomalies, but are
capable of predicting zonal wind anomalies at 850 hPa several
months ahead. Wang and Lee (2004) found that almost all
atmospheric general circulation models (AGCMs) have poor
skill at simulating circulation and precipitation anomalies over
the area from EA to the western North Pacific. Based on seven
ensemble forecast models, Sperber et al. (2001) evaluated the
seasonal predictability of rainfall and 850-hPa wind for the
ASM, and reported that 850-hPa wind and rainfall from model
hindcasts show limited prediction skill in EA. Wang et al.
(2008a) found that the multi-model ensemble prediction skill
for the EASM is better than the average skill of all individual
models, which provides an effective way to predict EASM
variability. In addition, previous studies investigated variability
in the seasonal predictability of the EASM (e.g., Wang et al.,
2005; Wu et al., 2009; Zhou and Zou, 2010; Yang et al., 2012;
Seo et al., 2015), revealing that the El Nifio-Southern Oscil-
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lation (ENSO) is the main source of seasonal predictability of
the EASM.

These studies greatly improved our understanding of seasonal
predictability of the EASM, and provide useful information
about the prediction of rainfall and circulation connected with
the EASM. However, compared with the seasonal pre-
dictability of the EASM, few investigations have examined the
predictability and prediction skill of the EASM at synoptic
timescales. Weather forecast models have been widely used to
investigate forecast skill for weather systems (e.g., Jacobson,
2001; Bélair et al., 2003), but have not yet been used to assess
forecast skill for the EASM at a synoptic timescale. The
synoptic variability of the monsoon intensity is closely con-
nected with the summer monsoon onset and rainfall in East
Asian (Li and Duan, 2011). Currently, China National Climate
Center (CNCC) has operationally released the daily EASM
intensity index (available online at http://cmdp.ncc-cma.net/
Monitoring/EastAsian/eamidx.2016.gif). Therefore, it is impor-
tant to investigate the synoptic-scale predictability and pre-
diction skill of the EASM. In this paper, we focus on the
predictability of the EASM intensity at a synoptic timescale.

Previous studies have generally assessed the predictability of
seasonal-scale EASM variability by using two common
approaches: a diagnostic approach (Shi et al., 2008) and a
prognostic approach (e.g., Wu et al., 2009; Wang et al., 2013).
The former approach usually explores the signal-to-noise ratio
of the EASM, which measures the relative contribution of the
potentially predictable climate signal component and the un-
predictable climate noise component of the EASM (Shi et al.,
2008). However, the signal-to-noise ratio method only provides
a qualitative measure of seasonal predictability and cannot
quantitatively determine the predictability limit of the EASM.
The latter approach is based on an empirical model. Wu et al.
(2009) established an empirical model by combining the
ENSO and spring North Atlantic Oscillation (NAO) to predict
interannual variation of the EASM. Wang et al. (2013) es-
tablished a similar model using the western Pacific Subtropical
High (WPSH) to predict the interannual variability of the
EASM. However, both the diagnostic and prognostic ap-
proaches are only suitable for estimating the potential pre-
dictability of climate variability: they cannot be used to assess
the predictability of the EASM at a synoptic timescale.

A new method based on the nonlinear local Lyapunov
exponent (NLLE), which is a nonlinear extension of the
traditional Lyapunov exponent concept, was introduced to
investigate atmospheric and oceanic predictability using obser-
vational data (e.g., Chen et al., 2006; Ding and Li, 2007; Ding
et al., 2008; Li and Ding, 2011). The atmospheric and oceanic
predictability limit can be quantitatively determined over
various timescales by using the NLLE method (e.g., Ding et
al., 2010, 2011, 2016; Li and Ding, 2013). Accordingly, the
predictability of the EASM at a synoptic timescale can be
estimated using the NLLE approach.

The remainder of this paper is organized as follows. Section
2 introduces the NLLE approach and Section 3 describes the

data, weather forecast model, and the various EASM indices.
Section 4 examines the predictability limit of the EASM at a
synoptic timescale based on observation, and Section 5 assesses
the forecast skill of daily EASM indices in the operational
weather forecast model. Finally, a summary and discussion are
provided in Section 6.

2. Nonlinear Local Lyapunov Exponent (NLLE)

For any dynamical system, the NLLE A is defined as

(), 80,7 = ke, M)

where x(#,) denotes an initial state in phase space, &#,) is the
initial error, #, is the initial time, 7 is the evolution time, and
&t,+7) is the evolution error. The NLLE is different from the
traditional Lyapunov exponent, which is determined solely by
the initial state x(f,) and the evolution time step 7, not by the
initial error &#,) (e.g., Yoden and Nomura 1993; Kazantsev
1999; Ziehmann et al., 2000). Moreover, the NLLE measures
the average growth rate of initial errors based on the nonlinear
error growth equations, thereby overcoming the limitations of
the traditional Lyapunov exponent that uses the linearized error
growth equation. The ensemble mean NLLE over the global
attractor of the dynamical system is given by

A8), 7= Alx(t0), 8(1),
= (Ax(to), &(to), Ayys  (N—>) 2)

where Q represents the domain of the global attractor of the
system and ( ), denotes the ensemble average of samples of
sufficiently large size N (N— ). The ensemble mean NLLE
reflects the global evolution of mean error growth over an
attractor and can measure global mean predictability. The mean
relative growth of the initial error (RGIE) can be obtained by:

(&, 7) = exp[A(&, D 7] 3

For chaotic systems, using the theorem from Ding and Li
(2007), we obtain

(5, )L ¢ (No>w), 4

where —— denotes the convergence in probability and ¢ is a
constant that depends on the converged probability distribution
P of error growth.

For nonlinear dynamical systems, we can directly calculate
the mean NLLE via a numerical integration of the error
evolution equations. In addition, if large amounts of obser-
vational or experimental data are available from dynamic
systems, we can estimate the mean NLLE by making use of
these data when the evolution equations of systems are
unknown or the known evolution equations are incomplete.

The general idea of the algorithm used to estimate mean
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NLLE based on observational data is to find local dynamical
analogs (LDAs) of the evolution pattern from an observational
time series. The determination of LDAs is based on initial
information and evolution information at two different time
points in the time series. Considering that initial information in
chaotic systems will gradually decay at an exponential rate,
each step of evolution error within the evolution time interval
is multiplied by a decreasing weighting coefficient at an expo-
nential rate, which is estimated from the persistence of the
observational time series. A brief description of the algorithm
is given in Appendix A.

This NLLE method has been applied to atmospheric and
oceanic observational data to investigate decadal changes in
weather predictability (Ding et al., 2008), the temporal-spatial
distributions of predictability limits of daily geopotential height
and wind fields (Li and Ding, 2011), the temporal-spatial dis-
tributions of predictability limits of monthly and seasonal
means of various climate variables (Li and Ding, 2013), the
predictability limit of the intraseasonal oscillation (ISO) (Ding
et al., 2010, 2011), the limit of decadal-scale climate predict-
ability (Ding et al., 2016), and the application of nonlinear
local Lyapunov vectors to ensemble predictions in Lorenz
systems (Feng et al., 2014).

3. Data
a. Observations

Observation datasets employed in this study include daily
wind and sea level pressure (SLP) fields from National Centers
for Environmental Prediction-National Center for Atmospheric
Research (NCEP/NCAR) reanalysis data for the period 1948-
20135, gridded at 2.5° x 2.5° resolution (Kalnay et al., 1996).

b. Description of the model and retrospective forecast

Daily wind and SLP fields from historical weather forecast
datasets were generated with the 2012 version of NCEP’s
Global Ensemble Forecasting System. This reforecast version
2 dataset consists of an 11-member ensemble of forecasts,
produced every day from 0000 UTC initial conditions from
December 1984 to present (available online at www.esrl.noaa.
gov/psd/forecasts/reforecast2/). The horizontal resolution of
GEFS is T254 (about 50 km) out to 8 days, and T190 (about
70 km) from 8 to 16 days, and real-time forecasts are ongoing.
For additional details on the GEFS, see Hamill et al. (2011a).

¢. Monsoon indices

The EASM has complex spatial and temporal structures, and
is influenced by variability originating in the tropics and mid-
high latitudes (e.g., Chen and Chang, 1980; Huang and Lu,
1989; Wu et al., 2000; Enomoto et al., 2003; Ding, 2004;
Ninomiya, 2004; He et al., 2006; Wu et al., 2006). The EASM
has more complicated rainfall structures than the Indian summer
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Table 1. Description of three categories of EASM circulation indices.
All indices are composed of two parts (Part I and Part II) and can thus
be defined as follows: Index = Part I — Part II.

Index Part I Part I1
1-SZ SLP(20°-50°N, 110°E) SLP((20°-50°N, 160°E)
1-ZZ SLP(30°-40°N, 160°E) SLP(40°-50°N, 110°E)
I-WF  Ug (5°%-15°N, 90°-130°E)  U,,(22.5°-32.5°N, 110°-140°E)
I-ZTC U, (10°-20°N, 100°-150°E)  Ug4,(25°-35°N, 100°-150°E)
I-LKY U, (40°-50°N, 110°-150°E)  U,,,(25°-35°N, 110°-150°E)
I-WYF Vg (20°-30°N, 110°-140°E) V4, (30°-40°N, 110°-140°E)

monsoon, which results in difficulties in representing EASM
strength using rainfall data. Consequently, large-scale winds
are preferred for defining the broad-scale monsoon charac-
teristics, meaning that most investigators define a simple
EASM index using circulation parameters instead of rainfall.
At least 25 circulation indices have been proposed to measure
EASM intensity (Wang et al., 2008). Unfortunately, the repre-
sentation of EASM circulation strength remains controversial.
Therefore, considering that it is difficult to measure variability
in EASM intensity with one index alone, six commonly used
EASM indices belonging to three categories of monsoon
circulation are employed in this study, as follows (Table 1).

The first category uses the SLP gradient between land and
sea to represent the east-west thermal contrast in EA. Shi and
Zhu (1996; hereafter I-SZ) used the average SLP difference
from 20°N to 50°N between 110°E (Part I) and 160°E (Part II)
to represent monsoon strength. The index defined by Zhao and
Zhou (2005; hereafter 1-ZZ) is similar to the I-SZ, but the
region is located at (30°-40°N, 160°E) (Part I) and (40°-50°N,
110°E) (Part II).

The second category is a zonal wind shear index that
employs the north-south shear of zonal winds to express
EASM variability. Wang and Fan (1999; hereafter I-WF) used
the area-average 850-hPa zonal wind (Uj;,) over (5°-15°N, 90°-
130°E) (Part I) minus the area-average Uy, over (22.5°-32.5°N,
110°-140°E) (Part II) to define EASM intensity indices. Zhang
et al. (2003; hereafter I-ZTC) applied a similar vorticity index,
defined as the area-averaged zonal wind anomaly shear bet-
ween (10°-20°N, 100°-150°E) (Part I) and (25°-35°N, 100°-
150°E) (Part IT) to measure monsoon strength. Lau et al. (2000;
hereafter I-LKY) used the area-averaged 200-hPa zonal wind
(U, difference between (40°-50°N, 110°-150°E) (Part I) and
(25°-35°N, 110°-150°E) (Part II) to measure variations in the
upper-tropospheric westerly jet stream associated with the
EASM.

The third category is the meridional wind shear index that
employs the north-south shear of meridional wind to measure
variability in the EASM. For example, Wang et al. (2001;
hereafter -WYF) applied an area-average 850-hPa meridional
wind (V;,) anomaly shear between (20°-30°N, 110°-140°E)
(Part I) and (30°-40°N, 110°-140°E) (Part II) to measure the
converging wind component of the EASM.
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Daily monsoon intensity indices were used to measure
variability in the EASM on a synoptic timescale. These indices
are based on traditional definitions of EASM indices, but are
calculated with daily rather than monthly data. The forecast
skill of NCEP’s GEFS historical weather forecast is measured
by the temporal correlation coefficient (TCC) skill. The TCC
skill was obtained from correlation coefficients between EASM
indices calculated from the NCEP reanalysis dataset and from
NCEP’s GEFS historical weather forecast dataset. Higher
correlation coefficients indicate a higher GEFS prediction skill.

4. Predictability of EASM indices at a synoptic time-
scale from observations

Using daily EASM indices for June-September (JJAS), the
NLLE approach was applied to obtain the mean RGIE of six
EASM indices (Fig. 1). The mean RGIE of all six EASM
indices increases quickly initially, then slows and finally reaches
saturation level. These processes represent linear fast growth,
nonlinear slow growth, and saturation phases of the mean error
in a chaotic system, respectively (Ding et al., 2008, 2016). In
comparison, the mean RGIE of daily EASM indices defined
by SLP difference (I-SZ and I-ZZ) and meridional wind shear
(I-WYF) show faster growth than those from indices defined
by zonal wind shear (I-WF, I-ZTC, and I-LKY).

The predictability limits of daily EASM indices can be
quantitatively determined using the saturation value, given fact
that most of information is lost from the initial state when the
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Fig. 1. Mean error growth for six daily EASM indices based on
observation for the period 1948-2015: (a) I-SZ, (b) I-ZZ, (c) I-WF,
(d) I-ZTC, (e) I-LKY, and (f) I-WYF, as obtained using the NLLE
method. The dashed line represents the 95% level of the saturation
value obtained by taking the average of the mean error growth after
10 days.

error growth reaches saturation (Ding and Li, 2008a, 2011).
Figure 2 shows that daily EASM indices defined by zonal wind
shear (I-WF, I-ZTC, and I-LKY) have a common predict-
ability limit of around 7 days, which is higher than the limit of
daily EASM indices defined by SLP difference (I-SZ and I-
Z27) and meridional wind shear (I-WYF) of about 5 days. This
suggests that the daily variability of EASM indices represented
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Fig. 2. Predictability limits of the six daily EASM indices based on
observation for the period 1948-2015. The red bar indicates the
predictability limit of the indices defined by SLP difference (I-SZ
and [-ZZ), the blue bar represents the predictability limit of indices
defined by zonal wind shear (I-WF, I-ZTC, and I-LKY), and the
black bar denotes the predictability limit of indices defined by
meridional wind shear (I-WYF).
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Fig. 3. Autocorrelations of the six daily EASM indices based on
observation for the period 1948-2015: (a) I-SZ, (b) I-ZZ, (c) I-WF,
(d) I-ZTC, (e) I-LKY, and (f) -WYF. The horizontal dashed line
denotes the 95% significance level.
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Fig. 4. Spatial distribution of the summer mean predictability limit (in days) in EA of: (a) daily SLP from I-SZ, (b) daily zonal wind at
850-hPa from I-WF, (c) daily zonal wind at 200-hPa from I-LKY, and (d) daily meridional wind shear at 850-hPa from I-WYF for the
period 1948-2015. In all cases the red and blue boxes delineate Part I and II of each index, respectively.

by zonal wind shear (I-WF, I-ZTC, and I-LKY) may be more
predictable than those represented by SLP difference (I-SZ and
1-Z7) and meridional wind shear (I-WYF). These results are
generally consistent with the findings of Zhou and Zou (2010),
who examined seasonal predictability of two commonly used
EASM strength indices and revealed that the EASM index
derived from zonal wind shear is more predictable than the
index derived from SLP difference.

Atmospheric persistence represents the inherent long initial
condition memory of the atmosphere (e.g., Reichler and
Roads, 2004; Ding et al., 2008). Generally speaking, a long
persistence is favorable for high predictability. Therefore, we
further explore the daily persistence of various EASM indices
with the aim of testing whether the predictability of various
EASM indices is closely related to their persistence. The
persistence of the EASM index is measured by the lag time (in
days) for the autocorrelation of the daily EASM index to reach
a significance level of 0.05 (e.g., Trenberth, 1985; Reichler and

Roads, 2004). Daily EASM indices defined by SLP difference
(I-SZ and 1-ZZ) and meridional wind shear (I-WYF) exhibit
relatively low persistence (about 2 days), while daily EASM
indices defined by zonal wind shear (I-WF, I-ZTC, and I-
LKY) exhibit relatively high persistence (about 3 days) (Fig.
3). These persistence results suggest that EASM indices
defined by zonal wind shear (I-WF, I-ZTC, and I-LKY) tend to
be more predictable than EASM indices defined by SLP
difference (I-SZ and I-ZZ) and meridional wind shear (I-
WYF). This finding is consistent with the predictability results
shown above.

To understand the possible reasons why different EASM
indices have varying predictability limits, we investigate the
spatial distribution of the summer mean predictability limit of
daily SLP, 850-hPa zonal wind, 200-hPa zonal wind, and 850-
hPa meridional wind fields over EA (0°-60°N, 90°-180°E) (Fig.
4). The predictability limit of daily SLP shows a zonal
distribution over EA, with a relatively high predictability limit
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Fig. 5. Predictability limits of Part I and II of the six daily EASM
indices based on observation for the period 1948-2015. The red bar
indicates the limit of Part I, and the blue bar indicates the limit of
Part II.

(about 6-8 days) over low-latitudes across EA (south of 30°N)
and a relatively low predictability limit (about 4-6 days) over
mid-high latitudes across EA (north of 30°N). The predict-
ability limit of daily 850-hPa zonal wind also shows a zonal
distribution over EA, with values decreasing from low-latitudes
to mid-high latitudes across EA. The predictability limit of
daily 200-hPa zonal wind is larger over most parts of Asian
continent (about 6-8 days) compared with oceanic regions
around EA (about 5-7 days). Compared with the previous three
fields, the predictability limit of daily 850-hPa meridional
wind is small (only 4-6 days) over most regions of EA,
suggesting that the meridional wind field is the most un-
predictable of all four fields over EA.

We note that the predictability limit of daily SLP over the
area 20°-50°N, 110°E (Part I of the I-SZ) (about 4-7 days) is
lower than that of 850-hPa zonal wind over the area 5°-15°N,
90°-130°E (Part I of the I-WF) (about 6-9 days) (Figs. 4a, b).
Also, SLP over the area 20°-50°N, 160°E (Part II of the 1-SZ)
shows a lower predictability limit (about 4-6 days) than 850-
hPa zonal wind over the area 22.5°-32.5°N, 110°-140°E (Part II
of the I-WF) (about 5-7 days) (Figs. 4a, b).

The error growth of both Part I and II of the daily EASM
index defined by SLP difference (I-SZ) is consistently faster
than that for Part I and II of the index defined by zonal wind
shear (I-WF) (not shown). As a result of the combined role of
Part I and II in daily EASM indices, the predictability limit of
the [-SZ is relatively low compared with the I-WF. In addition,
the predictability limit of 850-hPa meridional wind is signifi-
cantly lower than that of 850-hPa zonal wind over most
regions of EA (Figs. 4b, d). The predictability limit of both
parts of the EASM index defined by meridional wind shear (I-
WYF) is lower than that for the index defined by zonal wind
shear (I-WF) (Fig. 5). As a result, the index defined by zonal
wind shear (I-WF) tends to be more predictable than the index
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Fig. 6. Six different daily monsoon indices (solid line): (a) I-SZ, (b)
1-7ZZ, (c) I-WF, (d) I-ZTC, (e) I-LKY, and (f) I-WYF from 1 June
1948 to 30 September 1948. The annual cycle and linear trend of
the indices have been removed.

defined by meridional wind shear (I-WYF).

We also examined the time series of the six EASM indices
(Fig. 6). Note that EASM indices defined by SLP difference (I-
SZ and I-ZZ) and meridional wind shear (I-WYF) exhibit
more high-frequency daily fluctuations than indices defined by
zonal wind shear (I-WF, I-ZTC, and I-LKY). The power
spectra of different EASM indices reveal that variations in
three monsoon indices defined by zonal wind shear (I-WF, I-
ZTC, and I-LKY) appear to be concentrated at relatively long
periods (> 10 days), whereas indices defined by SLP difference
and meridional wind shear (I-SZ, I-ZZ, and I-WYF) occur
mostly at higher frequencies, with periods of 5-8 days (Fig. 7).
The high-frequency fluctuations of the I-SZ, I-ZZ, and I-WYF
are expected to be more difficult to predict than low-frequency
fluctuations of the I-WF, I-ZTC, and I-LKY. Shukla (1981)
found that the lack of predictability is due mainly to the
instabilities of synoptic-scale disturbances. High instability
means low predictability. High-frequency fluctuation represents
relative high instability, while low-frequency fluctuation repre-
sents relative low instability. This may explain why daily
EASM indices defined by zonal wind shear (I-WF, I-ZTC, and
I-LKY) have a higher predictability limit than indices defined
by SLP difference (I-SZ and 1-ZZ) and meridional wind shear
(I-WYF). In addition, these results are generally consistent
with the results of Ding et al. (2011), who examined the
predictability limits of two commonly used winter MJO
strength indices, and revealed that the low-frequency MJO
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Fig. 7. Power spectral analysis of the daily vatiations of six daily
EASM indices (solid line). The dotted line denotes 95% sig-
nificance and the dashed line indicates the red noise line.

index (5 day moving average of daily index) is more predict-
able (25 days) than the high-frequency daily index (18 days).

5. Synoptic-scale forecast skill of EASM indices in
weather forecast models’

The 31-year mean (1985-2015) TCC skill from six EASM
indices in NCEP’s GEFS historical weather forecast were used
to assess whether different EASM indices have different
forecast skills in weather forecast models (Fig. 8). The TCC
skill of all six EASM indices decreases with forecast lead time.
In comparison, the TCC skills of EASM indices defined by
zonal wind shear (I-WF, I-ZTC, and I-LKY) are clearly higher
than those defined by SLP difference (I-SZ and I-ZZ) and
meridional wind shear (I-WYF). This suggests that the GEFS
has a higher forecast skill for predicting indices defined by
zonal wind shear than those defined by SLP difference and
meridional wind shear.

Results based on observations for the period of 1985-2015
are consistent with results for the period of 1948-2015 (not
shown). These findings in GEFS are consistent with results
from observations presented above, and provide further
evidence that EASM indices defined by zonal wind shear tend
to be more predictable than indices defined by SLP difference
and meridional wind shear. In addition, we note that EASM
indices defined by SLP difference (I-SZ and I-ZZ) and me-
ridional wind shear (I-WYF) have a similar predictability limit
(about 5 days) in observations (Fig. 2). However, the forecast
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Fig. 8. TCC skills for six daily EASM indices averaged for 31 years
from 1985-2015, obtained from the NCEP reanalysis dataset and
the NCEP GEFS historical weather forecast dataset. The red, blue,
and black lines represent the TCC skill of the indices defined by
SLP difference (I-SZ and 1-ZZ), zonal wind shear (I-WF, I-ZTC,
and I-LKY), and meridional wind shear (I-WYF), respectively.
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Fig. 9. Time evolution of the absolute errors of six daily EASM
intensity indices obtained from the NCEP reanalysis dataset and the
NCEP GEEFS historical weather forecast dataset. The red, blue, and
black lines represent the absolute errors of the indices defined by
SLP difference (I-SZ and 1-ZZ), zonal wind shear (I-WF, I-ZTC,
and [-LKY), and meridional wind shear (I-WYF), respectively.
Units of the indices have been removed.

skill of the I-WYF is lower than that of the I-SZ and I-ZZ in
the GEFS, which is different from the results obtained from
observations.

Figure 9 shows the time evolution of the absolute errors of
six daily EASM indices in the GEFS, obtained from the
difference between NCEP reanalysis and GEFS historical
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Fig. 10. TCC skills of six daily EASM indices for 31 years from
1985 to 2015 obtained from the NCEP reanalysis dataset and the
NCEP GEFS historical weather forecast dataset. The red, blue, and
green lines represent the TCC skill for forecast leads of 3, 6, and 9
days, respectively.

weather forecasts. The absolute errors of daily EASM indices
defined by SLP difference (I-SZ and I-ZZ) and meridional
wind shear (I-WYF) exhibit faster growth than those of indices
define by zonal wind shear (I-WF, I-ZTC, and I-LKY). These
results are consistent with conclusions derived from the data in
Figs. 2 and 8, and further confirm the existence of differences
between the predictabilities of various EASM indices. In
addition, we note that the initial error of the daily EASM index
defined by meridional wind shear (I-WYF) is high compared
with that of other indices. This may explain why the forecast
skill of the I-WYF is lowest among all six EASM indices in
the GEFS.

In order to compare the predictability limit measured by
NLLE with limit of forecast skill by GEFS, we estimate
predictability limit of daily EASM indices in GEFS by using
the 95% level of the saturation value of forecast error. The
result shows that EASM indices defined by zonal wind shear
have a predictability limit of around 10 days, which is higher
than the predictability limit of EASM indices defined by SLP
difference and meridional wind shear (about 8 days). This
result is consistent with observational result. However, the
predictability limit estimated by NLLE method is shorter than
that in the GEFS.

We give some discussions of the possible reasons why the
estimated predictability limit by the NLLE method is under-

Table 2. Correlation coefficients of TCC time series for six daily
EASM indices with a 6-day forecast lead from 1985 to 2015.
*Correlation is significant at the 95% level.

Correlation 1-SZ  1-ZZ I-WF  [-ZTC [I-LKY [I-WYF
I-S7 1 0.516* -0.088 0209 -0.013  0.034
1-27 1 —0.089 —0.145 0.029  0.216
I-WF 1 0.464* -0.288 -0.240

I-ZTC 1 -0.280 —0.024
I-LKY 1 0.26
I-WYF 1

estimated. First, the atmospheric and oceanic predictability
depends not only on initial condition, but also on the slowly
varying boundary conditions. However, the predictability of
daily EASM indices obtained from the NLLE method mainly
comes from the initial information, without including the
predictability coming from slowly varying boundary condition.
As a result, the estimated predictability of daily EASM indices
by the NLLE method is shorter than the prediction skill by
numerical models. Second, the NLLE method estimates the
atmospheric and oceanic predictability by searching for the
analogs from the observational time series. Nonetheless, it
should be noted that if the number of observational points is
not enough to find good analogs, the estimated predictability
limit by the NLLE method would be underestimated.

Although the observational time series of daily EASM indices
available cover periods of 68 years, it is likely to be not
enough to find good analogues. Some false analogs are
inevitably found in the observational time series of daily
EASM indices, thereby leading to large initial errors that
reduce the estimated predictability limit. This is one limitation
of the NLLE method if we have only a relatively short period
of observational data (Li and Ding, 2013).

Previous studies indicate that the seasonal predictability of
the EASM shows significant interannual variation from the
1980s to 2000s (Yang et al., 2012). The JJAS-average TCC
skill of different daily EASM indices also shows significant
interannual variations from 1985 to 2015 in the GEFS (Fig.
10), which is similar to the seasonal predictability reported by
Yang et al. (2012). For the same EASM index, the TCC skill
shows largely consistent interannual fluctuations for different
lead times. For example, for the I-SZ index, the correlation
coefficients between the TCC skill for time series at lead times
of 3 and 6 days and between the TCC skill for time series at
lead times of 6 and 9 days are 0.65 and 0.85, respectively.

For a given lead time, the TCC skills of different types of
EASM indices do not show coherent interannual fluctuations.
For example, for a lead time of 6 days TCC skill for time
series in the I-SZ and I-WF only have a correlation coefficient
of —0.088 (Table 2). This suggests that the mechanisms re-
sponsible for interannual fluctuations of TCC skill for different
types of daily EASM indices may be different.

It is generally accepted that the decadal changes of
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Fig. 11. Spatial distributions of correlations of the TCC time series with the previous winter (DJF) SST anomalies. In (a)-(f), shaded

areas indicate correlations significant at the 90% level.

atmospheric predictability of monthly and seasonal means are
generally associated with changes of external forcing, while
the decadal changes of weather predictability are related to the
changes of internal dynamics variability of the atmosphere
(Ding et al., 2008). However, the changes of atmospheric
general circulation and external forcing could modulate the
dynamics of atmospheric internal variability, and in turn may
change the atmospheric persistence and predictability. There-
fore, we examine whether changes in the forecast skill of daily
EASM indices are related to those of external forcing (such as
SST). Figure 11 shows the correlations of TCC skill for time
series of six daily EASM indices with the previous winter
December-February (DJF) SST anomalies. There are signifi-

cant SST signals in the North Pacific or tropical oceans for all
six EASM indices. This suggests that changes in these SST
signals may be related to interannual fluctuations of the
forecast skill of daily EASM indices. However, the physical
mechanisms responsible for the link between these SST
signals and the forecast skill of daily EASM indices remain
explained. Further research is necessary to examine the
respective influences of these SST signals on the TCC skill of
various EASM indices.

6. Summary and discussion

Based on the NLLE method, the predictability limit of daily
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EASM indices at a synoptic timescale are quantitatively deter-
mined using the daily reanalysis dataset from NCEP. The
results show that the predictability limits of EASM indices
vary widely with the definition of the index. EASM indices
defined by zonal wind shear have a limit of around 7 days,
which is higher than the predictability limit of EASM indices
defined by SLP difference and meridional wind shear (about 5
days). The initial errors of EASM indices defined by SLP
difference and meridional wind shear show relatively rapid
growth, while the initial errors of indices defined by zonal
wind shear show relatively slow growth. The persistence of
these results suggests that EASM indices defined by zonal
wind shear tend to be more predictable than EASM indices
defined by SLP difference and meridional wind shear. This
finding is consistent with predictability results. Further analysis
indicates that indices defined by zonal wind shear appear to
fluctuate at relatively low frequencies, whereas indices defined
by SLP difference and meridional wind shear occur mostly at
higher frequencies. This result may explain why daily EASM
indices defined by zonal wind shear have a higher pre-
dictability limit than indices defined by SLP difference and
meridional wind shear.

By examining TCCs between EASM indices calculated
from the NCEP reanalysis dataset and those from NCEP’s
GEFS historical weather forecast dataset, we found that the
GEFS has a higher forecast skill in predicting EASM indices
defined by zonal wind shear than indices defined by SLP
difference and meridional wind shear. This finding is con-
sistent with results from observations. Moreover, JJAS-average
TCC skills for different daily EASM indices show significant
interannual variations from 1985 to 2015 in the GEFS.
However, the TCC skill of different types of EASM indices
shows different interannual fluctuations.

The estimated predictability of daily EASM indices by the
NLLE method is shorter than the prediction skill by numerical
models. Although the predictability limit of daily EASM
indices based on the NLLE method may be underestimated in
the present study, the differences in the predictability limit of
various EASM indices could be realistic. Results from nu-
merical models indicate that daily EASM indices defined by
zonal wind shear (I-WF, I-ZTC, and I-LKY) have a higher
forecast skill than indices defined by SLP difference (I-SZ and
I-ZZ) and meridional wind shear (I-WYF), which is consistent
with observational results. In addition, the predictability of
daily EASM indices measured by NLLE method can provide a
baseline for the prediction skill of numerical models.

In this study, we used daily indices defined by circulation
instead of precipitation due to the fact that unlike circulation
variables (such as SLP or winds), the daily precipitation is not
continuous. It is difficult to calculate the NLLE by using daily
precipitation. Therefore, this study does not give the analysis
of the predictability limit of indices defined by precipitation.
However, the EASM index defined by air mass (Seo et al.,
2015; hereafter I-SSLP), which is measured by meridional
gradient of equivalent temperature, is a good supplement in
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Fig. 12. Mean error growth for the daily EASM index based on
observation for the period 1948-2015: I-SSLP, as obtained using the
NLLE method. The dashed line represents the 95% level of the
saturation value obtained by taking the average of the mean error
growth after 10 days.

this study. Figure 12 shows that daily EASM index defined by
air mass has a predictability limit of about 7 days, which is
close to the limit of the indices defined by zonal wind shear (I-
WEF, I-ZTC, and I-LKY) but higher than the limit of daily
EASM indices defined by SLP difference (I-SZ and I-ZZ) and
meridional wind shear (I-WYF) of about 5 days. Persistence,
power spectral analysis and model forecasts of daily I-SSLP
are also consistent with the results of indices defined by zonal
wind shear (not shown).

Variabilities of 5-day moving average of daily EASM
circulation indices are closely linked to the onset and retreat of
the EASM. Figure 13 shows that the 5-day moving average of
various EASM indices has a similar predictability limit of about
13 days. This is different from the results of daily indices in
which different types of EASM monsoon indices show
different predictability. Persistence and power spectral analyses
are also support the results of the predictability (not shown).

It should be noted that we only used NCEP/NCAR reanalysis
datasets to calculate the predictability limits of EASM indices
at a synoptic timescale. Previous studies have shown that the
NCEP/NCAR reanalysis dataset has errors or uncertainties in
some regions due to missing observations (eg., Kistler et al.,
2001; Inoue and Matsumoto, 2004). Further work should
compare the results of the predictability of the daily EASM
indices obtained using NCEP reanalysis with those using other
reanalysis or observational datasets. In addition, our results
show that interannual variabilities in the TCC skill of daily
EASM indices are complex. Different daily EASM indices,
which reflect different variability in daily EASM strength,
have different TCC skills. It is difficult to fully explain the
interannual changes in the TCC skill of EASM indices at a
synoptic timescale. Therefore, the mechanisms that determine
the interannual variability in TCC skill for the EASM at a
synoptic timescale require further study.
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Fig. 13. Mean error growth for 5-day moving average of daily
EASM circulation indices based on observation for the period 1948-
2015: (a) I-SZ, (b) 1-ZZ, (c) I-WF, (d) I-ZTC, (e) I-LKY, and (f) I-
WYE, as obtained using the NLLE method. The dashed line
represents the 95% level of the saturation value obtained by taking
the average of the mean error growth after 10 days.
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APPENDIX A
An algorithm for NLLE estimation from observational data

If we obtain the experimental data of a single variable x of
an n-dimensional chaotic system, or observe the atmospheric
or oceanic data of variable x at one point of » spatial grid
points (e.g., the time series of x is given by {x(z,), i=0,1,2,
------ ,m—1} where m represents the length of the time series),
an algorithm that allows an estimation of the mean NLLE from
the experimental or observational time series of variable x is as
follows.

Step 1. Taking x(z,) as the reference point at time 7,, we first
seek the local dynamical analog (LDA) x(,) of the reference
point from the raw series. Two distances (i.e., the initial
distance between two points and the evolutionary distance
between their trajectories within a short initial period) are used
to measure the degree of similarity between the points. All
points x(7) (|1, >t,, where 7, is the time taken for auto-
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correlations of variable x to drop to around 0.0, ensuring that a
good analog pair is not merely due to persistence) in the raw
series form a set S. The initial distance d; between the points
x(#,) and x(7) is given by

d; = x(t)—x(1))| . (Al)

We assume that the evolutions of the two points are analo-
gous over a very short time 7, which is referred to as the initial
evolutionary interval, if they are analogous at the initial time.
The choice of the initial evolutionary interval 7 depends on the
persistence of variable x; if the persistence is low, the time over
which two initially close points remain analogous is relatively
short. The time taken for autocorrelations of variable x to drop
to 0.9 can be regarded as a rough estimate of the initial
evolutionary interval z. A high value (0.9) of autocor-
relation is chosen to ensure a short initial evolutionary interval
(the results were found to be insensitive to the selected value).
Within the initial evolutionary interval 7 (7= KA, where A is
the sampling interval of the time series (i.e., A=7~f_,) and K is
the number of sampling intervals over the initial evolutionary
interval), the evolutionary distance d, between the two points
x(#,) and x(#) is given by:

do= | S —x(t. )T (A2)

i=0

Here, d. is the amount of the initial separation between the two
points x(#,) and x(#), while d, is the evolutionary distance
between their trajectories over the initial evolutionary interval.
The total distance d, considering not only the initial distance
but also the evolutionary distance, is found by adding d; and d,:

d=d+d. (A3)

If d, is very small, it is highly likely that the points x(z,) and
x(#) are LDA points at the initial time. Of course, this approach
is unlikely to exclude the possibility that only the variable x
and its most relevant variables remain close, whereas other
variables evolve very differently over time, especially for high-
dimensional dynamical systems. Therefore, the analogs based
on variable x are only local analogs, and they cannot simply be
considered as global analogs. The constraint of the total
distance d, which contains both initial information and evolu-
tionary information over an initial evolutionary, allows us to
exclude a large portion of all points with large initial distances,
thereby helping us to find a truly local analog for the reference
point.

For every point x(#) in the set S, the value of d, can be
determined. The nearest neighbor (LDA) x(#,) of the reference
point x(f,) can be chosen from the set S only if d, is the
minimum. Then, the initial distance between x(¢,) and x(z,) is
denoted as follows:

Li(ty) = x(to)—x(1,)] . (A4)
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Step 2. Attime 7;=ix A (i=1, 2, 3, - , M, where M is the
total number of evolutionary steps), x(7,) will have evolved to
x(t,+ ) along the reference trajectory, and x(7,) will have
evolved into x(#,+ 7)) along the analogous trajectory. The
initial difference L,(t,) will have become:

Ly(7) = (to+ ) —x(t,+ 7). (A5)

The growth rate of the initial error during the evolutionary
interval (z',.) is:

1o L)
Ziny (0)’

With i gradually increasing, we can obtain the variation of
&,(7) as a function of the evolution time 1, (i =1, 2, 3, -, M).

E(r)=1 ((=1,2,3, 0, M). (A6)

Step 3. Taking x(#,) as the reference state and evolution time
r=ixA (i=1, 2, 3, -~ , M), and repeating Steps 1 and 2
above, we obtain the error growth rate &(z) as a function of
the evolution time 7, :

Lz( )

&)= 2' L2 0)°
where L,(0) is the initial distance between the reference point
x(t,) and its LDA, and L,(7) is the evolution of L,(0) with time
T.

Step 4. The above procedure is repeated until the trajectory
reaches the last reference point x(¢, ,,,), and we have error
growth rates at all reference points {x(z,), x(z,), - s XX, 01)}
given by:

Li5) e

fk(‘f)_ Ti Lk(O)

...... SN i=

where N = m — M is the total number of reference points on the
reference trajectory, 7,=ixA (i=1, 2, 3, - , M) is the
evolution time, L,(0) is the initial distance between the re-
ference point x(#,) and its LDA, and L,(7) is the evolution of
L,0) with the time 7. It follows that the average of error

growth rates at all reference points is:

Am) = ]l\,z &(7)

_1 s (7)]_1 VLI(Ti)LZ(Ti) L(7)
Nz[r Lk(O)} riln[‘“&/ Li(0)L,(0) " LN(O)]

That is:

Li(7)Ly(17) Ly(7)
exp[f(r)r] = «/L 0)I,(0)""" NOR (A7)

Step 5. Observing that the right-hand-side of Eq. (A7) is the
geometric mean of the relative growth of initial error (RGIE)
of all reference points, we obtained the approximation of the

mean RGIE:

E)(Tz)zeXP[z(Tz)Tz]s(ZZ 1,2, 3a """ 5 M) (AS)

By investigating the evolution of ®@(#;)) with increasing z,
we can estimate the mean predictability limit of the variable x.

References

Bélair, S., L. P. Crevier, J. Mailhot, B. Bilodeau, and Y. Delage, 2003:
Operational implementation of the ISBA land surface scheme in the
Canadian regional weather forecast model. Part I: Warm season results.
J. Hydrometeor., 4, 352-370, doi:10.1175/1525-7541(2003)4<352:
OIOTIL>2.0.CO;2.

Chang, C. P., 2004: Preface. East Asian Monsoon. Chang, C.-P. Ed., World
Scientific, v -vi.

Chen, B. H,, J. P. Li, and R. Q. Ding, 2006: Nonlinear local Lyapunov
exponent and atmospheric predictability research. Sci. China Ser. D, 49,
1111-1120.

Chen, T. J. G, and C. P. Chang, 1980: The structure and vorticity budget of
an early summer monsoon trough (Mei-Yu) over southeastern China
and Japan. Mon. Wea. Rev., 108, 942-953.

Ding, R. Q., and J. P. Li, 2007: Nonlinear finite-time Lyapunov exponent
and predictability. Phys. Lett. A, 364, 396-400, doi:10.1016/j.physleta.
2006.11.094.

R , and K.-J. Ha, 2008: Trends and interdecadal changes of

weather predictability during 1950s-1990s. J. Geophys. Res., 113,

D24112, doi:10.1029/2008JD010404.

, and , 2008a: Nonlinear local Lyapunov exponent

and quantltlcatlon of local predlctablhty Chinese Phys. Lett., 25, 1919-
1922.
s , and K. H. Seo, 2010: Predictability of the Madden-Julian
oscillation estimated using observational data. Mon. Wea. Rev., 138,
1004-1013, doi:10.1175/2009MWR3082.1.

, and , 2011: Estimate of the predictability of boreal

summer and winter mtraseasonal oscillations from observations. Mon.

Wea. Rev., 139, 2421-2438, doi:10.1175/2011MWR3571.1.

s , F. Zheng, J. Feng, and D. Liu, 2016: Estimating the limit
of decadal-scale climate predictability using observational data. Climate
Dyn., 46, 1563-1580, doi:10.1007/s00382-015-2662-6.

Ding, Y. H., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc.
Japan, 70,397-421.

, 2004: Seasonal march of the east Asian summer monsoon. East
Asian Monsoon. Chang, C.-P. Ed., World Scientific, 3-53.

, Y. Sun, and Y. Y. Liu, 2013: Interdecadal and interannual
variabilities of the Asian summer monsoon and its projection of future
change. Chinese J. Atmos. Sci., 37, 253-280 (in Chinese with English
abstract).

Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation
mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc.,
129, 157-178, doi:10.1256/qj.01.211.

Feng, J., R. Ding, D. Liu, and J. Li, 2014: The application of nonlinear
local Lyapunov vectors to ensemble predictions in Lorenz systems. J.
Atmos. Sci., 71, 3554-3567, doi:10.1175/JAS-D-13-0270.1.

Hamill, T. M., J. S. Whitaker, M. Fiorino, and S. G. Benjamin, 2011a:
Global ensemble predictions of 2009’s tropical cyclones initialized with
an ensemble Kalman filter. Mon. Wea. Rev., 139, 668-688, doi:10.1175/
2010MWR3456.1.

He, J. H., Z. W. Wu, Z. H. Jiang, C. S. Miao, and G. R. Han, 2006:
“Climate effect” of the northeast cold vortex and its influences on
Meiyu. Chinese Sci. Bull., 51, 2803-2809, doi:10.1007/s11434-007-
0053-z (in Chinese with English abstract).



31 May 2017

Huang, R. H., and L. Lu, 1989: Numerical simulation of the relationship
between the anomaly of subtropical high over east Asia and the
convective activities in the western tropical Pacific. Adv. Atmos. Sci., 6,
202-214 (in Chinese with English abstract).

,and L. T Zhou, 2002: Research on the characteristics, formation
mechanism and prediction of severe climatic disasters in China. J. Nat.
Dis., 11, 1-9 (in Chinese with English abstract).

, J. L. Chen, L. T. Zhou, and Q. Y. Zhang, 2003: Studies on the
relationship between the severe climatic disasters in China and the East
Asia climate system. Chinese J. Atmos. Sci., 27, 770-787 (in Chinese
with English abstract).

, Q. Y. Zhang, and S. G. Ruan, 2004: Prediction and Warning of
Meteorological Disasters in China and Scientific Decision for the
Prevent ion and Mitigation of These Disasters. China Meteorological
Press, 148 pp (in Chinese).

Inoue, T., and J. Matsumoto, 2004: A comparison of summer sea level
pressure over east Eurasia between NCEP-NCAR reanalysis and ERA-
40 for the period 1960-99. J. Meteor. Soc. Japan, 82, 951-958.

Jacobson, M. Z., 2001: GATOR-GCMM: A global-through urban-scale air
pollution and weather forecast model: 1. Model design and treatment of
subgrid soil, vegetation, roads, rooftops, water, sea ice, and snow. J.
Geophys. Res., 106, 5385-5401, doi:10.1029/2000JD900560.

Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis
project. Bull. Amer. Meteor. Soc., 77,437-471.

Kang, H., and C. K. Park, 2007: Error analysis of dynamical seasonal
predictions of summer precipitation over the East Asian-western Pacific
region. Geophys. Res. Lett., 34, doi:10.1029/2007GL029392.

Kang, I. S., and Coauthors, 2002: Intercomparison of the climatological
variations of Asian summer monsoon precipitation simulated by 10
GCMs. Climate Dyn., 19, 383-395, doi:10.1007/s00382-002-0245-9.

Kazantsev, E., 1999: Local Lyapunov exponents of the quasi-geostrophic
ocean dynamics. Appl. Math. Comput., 104, 217-257, doi:10.1016/
$0096-3003(98)10078-4.

Kistler, R. E., and Coauthors, 2001: The NCEP/NCAR 50-year reanalysis:
Monthly means CD-ROM and documentation. Bull. Amer. Meteor:
Soc., 82,247-267.

Lau, K. M., K.-M. Kim, and S. Yang, 2000: Dynamical and boundary
forcing characteristics of regional components of the Asian summer
monsoon. J. Climate, 13,2461-2482.

Lee, S. S., J. Y. Lee, K. J. Ha, B. Wang, and J. K. E. Schemm, 2010:
Deficiencies and possibilities for long-lead coupled climate prediction
of the Western North Pacific-East Asian summer monsoon. Climate
Dyn., 36, 1173-1188, doi:10.1007/s00382-010-0832-0.

Li, F., and A. M. Duan, 2011: Variation of the Tibetan Plateau summer
monsoon and its effect on the rainfall and the circulation in Asia-A case
study in 2008. Chinese J. Atmos. Sci., 35, 694-706 (in Chinese with
English abstract).

Li, J. P, and R. Q. Ding, 2011: Temporal-spatial distribution of
atmospheric predictability limit by local dynamical analogues. Mon.
Wea. Rev., 139, 3265-3283, doi:10.1175/MWR-D-10-05020.1.

and , 2013: Temporal-spatial distribution of the
predictability limit of monthly sea surface temperature in the global
oceans. Int. J. Climatol., 33, 1936-1947, doi:10.1002/joc.3562.

, and Q. Zeng, 2002: A unified monsoon index. Geophys. Res.
Lett., 29, 1274, doi:10.1029/2001GL013874.

Ninomiya, K., 2004: Large-and mesoscale features of the Meiyu-baiu front
associated with intense rainfalls. East Asian Monsoon. Chang, C.-P. Ed.,
World Scientific, 404-435.

Reichler, T., and J. O. Roads, 2004: Time-space distribution of long-range
atmospheric predictability. J. Afmos. Sci., 42, 249-263.

Seo, K. H., J. H. Son, J. Y. Lee, and H. S. Park, 2015: Northern East Asian
Monsoon precipitation revealed by air mass variability and its
prediction. J. Climate., 28, 6221-6233, doi:10.1175/JCLI-D-14-00526.1.

Shucong Ai et al. 13

Shi, H. B., T. J. Zhou, H. WAN, and B. Wang, 2008: SMIP2 Experiment-
based gnalysis on the simulation and potential predictability of Asian
summer monsoon. Chinese J. Atmos. Sci., doi:10.3878/j.issn.1006-
9895.2008.01.04 (in Chinese with English abstract).

Shi, N., and Q. G. Zhu, 1996: An abrupt change in the intensity of the East
Asian summer monsoon index and its relationship with temperature and
precipitation over East China. Int. J. Climatol., 16, 757-764 (in Chinese
with English abstract).

Shukla, J., 1981: Dynamical predictability of Monthly means. J. Atmos.
Sci., 38, 2547-2572.

Sperber, K. R., and Coauthors, 2001: Dynamical seasonal predictability of
the Asian summer monsoon. Mon. Wea. Rev., 129, 2226-2248.

Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East
Asian summer monsoon in China. Monsoon Meteorology. Chang, C. P.
et al. Eds., Oxford University Press, 60-92.

Trenberth, K. E., 1985: Persistence of daily geopotential heights over the
Southern Hemisphere. Mon. Wea. Rev., 113, 38-53.

Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon
indices. Bull. Amer. Meteor. Soc., 80, 629-638.

,and T. Li, 2004: East Asian monsoon and ENSO interaction. East
Asian Monsoon. Chang, C. P. Ed., World Scientific, 172-212.

, I. S. Kang, and J. Y. Lee, 2004: Ensemble simulations of Asian-
Australian monsoon variability by 11 AGCMs. J. Climate, 17, 803-818.

, Q. Ding, X. Fu, I. S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes,
2005: Fundamental challenge in simulation and prediction of summer
monsoon rainfall. Geophys. Res. Lett., 32, L15711, doi:10. 1029/
2005GL022734.

,Z. Wu, J. Li, J. Liu, C. P. Chang, Y. Ding, and G. Wu, 2008: How
to measure the strength of the East Asian summer monsoon. J. Climate,
21, 4449-4463.

, and Coauthors, 2008a: Advance and prospectus of seasonal
prediction: Assessment of the APCC/CIiPAS 14-model ensemble
retrospective seasonal prediction (1980-2004). Climate Dyn., 33, 93-
117, doi:10.1007/s00382-008-0460-0.

, B. Q. Xiang, and J. Y. Lee, 2013: Subtropical high predictability
establishes a promising way for monsoon and tropical storm predictions.
Proc. Natl. Acad. Sci., 110, 2718-2722, doi:10.1073/pnas.1214626110.

Wang, Y. F., B. Wang, and J. H. Oh, 2001: Impacts of the preceding El
Nifio on the East Asian summer atmospheric circulation. J. Meteor: Soc.
Japan, 79, 575-588, doi:10.2151/jmsj.79.575.

Wu, G X, P. Liy, Y. Liu, and W. Li, 2000: Impacts of sea surface
temperature anomaly in the Indian Ocean on the subtropical cyclone
over the western Pacific—Two-stage thermal adaptation in the
atmosphere. Acta Meteor. Sin., 58, 513-522 (in Chinese with English
abstract).

Wu, Z. W., Z. H. Jiang, and J. H. He, 2006: Comparison analysis of flood
and drought features among the first flood period in south China, Meiyu
period in the Yangtze River and Huaihe River valleys and rainy season
in north China in the last 50 years. Chinese J. Atmos. Sci., 30, 391-401
(in Chinese with English abstract).

, B. Wang, J. Li, and F. F. Jin, 2009: An empirical seasonal
prediction model of the East Asian summer monsoon using ENSO and
NAO. J. Geophys. Res., 114, doi:10.1029/2009JD011733.

, and J. P Li, 2008: Prediction of the Asian-Australian monsoon
interannual variations with the grid-point atmospheric model of IAP
LASG (GAMIL). Adv. Atmos. Sci., 25, 387-394, doi:10.1007/s00376-
008-0387-8.

Yang, D. J., Y. M. Tang, Y. C. Zhang, and X. Q. Yang, 2012: Information-
based potential predictability of the Asian summer monsoon in a
coupled model. J. Geophys. Res., 117, doi:10.1029/2011JD016775.

Yoden, S., and M. Nomura, 1993: Finite-time Lyapunov stability analysis
and its application to atmospheric predictability. J. Atmos. Sci., 50,
1531-1543.



14 ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES

Zeng, Q. C., 1994: Experiments of seasonal and extreseasonal predictions
of summer monsoon precipitation. Proc. International Conféerence on
Monsoon Variability and Predicability. Trieste, May 9-13, 1994, 452-
459.

Zhang, Q. Y., S. Y. Tao, and L. T. Chen, 2003: The interannual variability
of East Asian summer monsoon indices and its association with the
pattern of general circulation over East Asia. Acta Meteor: Sin., 61, 559-
568 (in Chinese with English abstract).

Zhao, P., and Z. J. Zhou, 2005: East Asian subtropical summer monsoon

index and its relationships to rainfall. Acta Meteor. Sin., 63, 933-941 (in
Chinese with English abstract).

Zhou, T. J., and L. W. Zou, 2010: Understanding the predictability of East
Asian summer monsoon from the reproduction of land-sea thermal
contrast change in AMIP-type simulation. J. Climate, 23, 6009-6026,
doi:10.1175/2010JCLI3546.1.

Ziehmann, C., L. A. Smith, and J. Kurths, 2000: Localized Lyapunov
exponents and the prediction of predictability. Phys. Lett. A, 4,237-251,
doi:10.1016/S0375-9601(00)00336-4.



