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Abstract: The nonlinear local Lyapunov exponent (NLLE) method

is adopted to quantitatively determine the predictability limit of East

Asian summer monsoon (EASM) intensity indices on a synoptic

timescale. The predictability limit of EASM indices varies widely

according to the definitions of indices. EASM indices defined by

zonal shear have a limit of around 7 days, which is higher than the

predictability limit of EASM indices defined by sea level pressure

(SLP) difference and meridional wind shear (about 5 days). The

initial error of EASM indices defined by SLP difference and

meridional wind shear shows a faster growth than indices defined by

zonal wind shear. Furthermore, the indices defined by zonal wind

shear appear to fluctuate at lower frequencies, whereas the indices

defined by SLP difference and meridional wind shear generally

fluctuate at higher frequencies. This result may explain why the daily

variability of the EASM indices defined by zonal wind shear tends

be more predictable than those defined by SLP difference and

meridional wind shear. Analysis of the temporal correlation co-

efficient (TCC) skill for EASM indices obtained from observations

and from NCEP’s Global Ensemble Forecasting System (GEFS)

historical weather forecast dataset shows that GEFS has a higher

forecast skill for the EASM indices defined by zonal wind shear than

for indices defined by SLP difference and meridional wind shear.

The predictability limit estimated by the NLLE method is shorter

than that in GEFS. In addition, the June-September average TCC

skill for different daily EASM indices shows significant interannual

variations from 1985 to 2015 in GEFS. However, the TCC for

different types of EASM indices does not show coherent interannual

fluctuations.

Key words: predictability at a synoptic timescale, East Asian

summer monsoon, nonlinear local Lyapunov exponent

1. Introduction

The East Asian summer monsoon (EASM) is an important

and unique component of the Asian summer monsoon system

(e.g., Chen and Chang, 1980; Tao and Chen, 1987; Ding et al.,

1992; Wang and Li, 2004). It is characterized by unique

orographic forcing, involving huge thermal contrasts between

the largest global continent, Eurasia, and the largest ocean basin,

the Pacific. The EASM is also strongly influenced by the

Tibetan Plateau, which is the highest land feature in the world.

Floods and droughts associated with the EASM affect the

livelihoods of billions of people and infrastructure across East

Asia (EA) including China, Korea, and Japan (Huang et al.,

2002, 2003). The variation of the EASM intensity is closely

related to precipitation in EA (e.g., Li and Zeng, 2002; Huang

et al., 2004). Thus, improving the prediction skill of the EASM

intensity has great societal importance and economic value.

Many previous studies have examined the predictability and

prediction skill of the monthly- or seasonal-scale circulation

and rainfall of the EASM using numerical simulation. (e.g.,

Zeng, 1994; Sperber et al., 2001; Kang et al., 2002; Chang,

2004; Ding et al., 2004; Wang et al., 2004; Kang and Park,

2007; Wu and Li, 2008; Lee et al., 2010; Zhou and Zou, 2010;

Ding et al., 2013). For example, Lee et al. (2010) used two

climate forecast models (the NCEP Climate Forecast System

and the Australia Meteorology Research Center Predictive

Model) to investigate deficiencies and potential for predicting

EASM precipitation and circulation one or two seasons ahead.

Their results showed that both coupled models have difficulty

in predicting summer mean precipitation anomalies, but are

capable of predicting zonal wind anomalies at 850 hPa several

months ahead. Wang and Lee (2004) found that almost all

atmospheric general circulation models (AGCMs) have poor

skill at simulating circulation and precipitation anomalies over

the area from EA to the western North Pacific. Based on seven

ensemble forecast models, Sperber et al. (2001) evaluated the

seasonal predictability of rainfall and 850-hPa wind for the

ASM, and reported that 850-hPa wind and rainfall from model

hindcasts show limited prediction skill in EA. Wang et al.

(2008a) found that the multi-model ensemble prediction skill

for the EASM is better than the average skill of all individual

models, which provides an effective way to predict EASM

variability. In addition, previous studies investigated variability

in the seasonal predictability of the EASM (e.g., Wang et al.,

2005; Wu et al., 2009; Zhou and Zou, 2010; Yang et al., 2012;

Seo et al., 2015), revealing that the El Niño-Southern Oscil-
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lation (ENSO) is the main source of seasonal predictability of

the EASM.

These studies greatly improved our understanding of seasonal

predictability of the EASM, and provide useful information

about the prediction of rainfall and circulation connected with

the EASM. However, compared with the seasonal pre-

dictability of the EASM, few investigations have examined the

predictability and prediction skill of the EASM at synoptic

timescales. Weather forecast models have been widely used to

investigate forecast skill for weather systems (e.g., Jacobson,

2001; Bélair et al., 2003), but have not yet been used to assess

forecast skill for the EASM at a synoptic timescale. The

synoptic variability of the monsoon intensity is closely con-

nected with the summer monsoon onset and rainfall in East

Asian (Li and Duan, 2011). Currently, China National Climate

Center (CNCC) has operationally released the daily EASM

intensity index (available online at http://cmdp.ncc-cma.net/

Monitoring/EastAsian/eamidx.2016.gif). Therefore, it is impor-

tant to investigate the synoptic-scale predictability and pre-

diction skill of the EASM. In this paper, we focus on the

predictability of the EASM intensity at a synoptic timescale.

Previous studies have generally assessed the predictability of

seasonal-scale EASM variability by using two common

approaches: a diagnostic approach (Shi et al., 2008) and a

prognostic approach (e.g., Wu et al., 2009; Wang et al., 2013).

The former approach usually explores the signal-to-noise ratio

of the EASM, which measures the relative contribution of the

potentially predictable climate signal component and the un-

predictable climate noise component of the EASM (Shi et al.,

2008). However, the signal-to-noise ratio method only provides

a qualitative measure of seasonal predictability and cannot

quantitatively determine the predictability limit of the EASM.

The latter approach is based on an empirical model. Wu et al.

(2009) established an empirical model by combining the

ENSO and spring North Atlantic Oscillation (NAO) to predict

interannual variation of the EASM. Wang et al. (2013) es-

tablished a similar model using the western Pacific Subtropical

High (WPSH) to predict the interannual variability of the

EASM. However, both the diagnostic and prognostic ap-

proaches are only suitable for estimating the potential pre-

dictability of climate variability: they cannot be used to assess

the predictability of the EASM at a synoptic timescale.

A new method based on the nonlinear local Lyapunov

exponent (NLLE), which is a nonlinear extension of the

traditional Lyapunov exponent concept, was introduced to

investigate atmospheric and oceanic predictability using obser-

vational data (e.g., Chen et al., 2006; Ding and Li, 2007; Ding

et al., 2008; Li and Ding, 2011). The atmospheric and oceanic

predictability limit can be quantitatively determined over

various timescales by using the NLLE method (e.g., Ding et

al., 2010, 2011, 2016; Li and Ding, 2013). Accordingly, the

predictability of the EASM at a synoptic timescale can be

estimated using the NLLE approach.

The remainder of this paper is organized as follows. Section

2 introduces the NLLE approach and Section 3 describes the

data, weather forecast model, and the various EASM indices.

Section 4 examines the predictability limit of the EASM at a

synoptic timescale based on observation, and Section 5 assesses

the forecast skill of daily EASM indices in the operational

weather forecast model. Finally, a summary and discussion are

provided in Section 6.

2. Nonlinear Local Lyapunov Exponent (NLLE)

For any dynamical system, the NLLE λ is defined as

, (1)

where x(t
0
) denotes an initial state in phase space, δ(t

0
) is the

initial error, t
0
 is the initial time, τ is the evolution time, and

δ(t
0
+τ) is the evolution error. The NLLE is different from the

traditional Lyapunov exponent, which is determined solely by

the initial state x(t
0
) and the evolution time step τ, not by the

initial error δ(t
0
) (e.g., Yoden and Nomura 1993; Kazantsev

1999; Ziehmann et al., 2000). Moreover, the NLLE measures

the average growth rate of initial errors based on the nonlinear

error growth equations, thereby overcoming the limitations of

the traditional Lyapunov exponent that uses the linearized error

growth equation. The ensemble mean NLLE over the global

attractor of the dynamical system is given by

, ( ) (2)

where Ω represents the domain of the global attractor of the

system and  denotes the ensemble average of samples of

sufficiently large size N ( ). The ensemble mean NLLE

reflects the global evolution of mean error growth over an

attractor and can measure global mean predictability. The mean

relative growth of the initial error (RGIE) can be obtained by:

. (3)

For chaotic systems, using the theorem from Ding and Li

(2007), we obtain

Φ(δ
0
, τ) c ( ), (4)

where  denotes the convergence in probability and c is a

constant that depends on the converged probability distribution

P of error growth. 

For nonlinear dynamical systems, we can directly calculate

the mean NLLE via a numerical integration of the error

evolution equations. In addition, if large amounts of obser-

vational or experimental data are available from dynamic

systems, we can estimate the mean NLLE by making use of

these data when the evolution equations of systems are

unknown or the known evolution equations are incomplete.

The general idea of the algorithm used to estimate mean
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NLLE based on observational data is to find local dynamical

analogs (LDAs) of the evolution pattern from an observational

time series. The determination of LDAs is based on initial

information and evolution information at two different time

points in the time series. Considering that initial information in

chaotic systems will gradually decay at an exponential rate,

each step of evolution error within the evolution time interval

is multiplied by a decreasing weighting coefficient at an expo-

nential rate, which is estimated from the persistence of the

observational time series. A brief description of the algorithm

is given in Appendix A.

This NLLE method has been applied to atmospheric and

oceanic observational data to investigate decadal changes in

weather predictability (Ding et al., 2008), the temporal-spatial

distributions of predictability limits of daily geopotential height

and wind fields (Li and Ding, 2011), the temporal-spatial dis-

tributions of predictability limits of monthly and seasonal

means of various climate variables (Li and Ding, 2013), the

predictability limit of the intraseasonal oscillation (ISO) (Ding

et al., 2010, 2011), the limit of decadal-scale climate predict-

ability (Ding et al., 2016), and the application of nonlinear

local Lyapunov vectors to ensemble predictions in Lorenz

systems (Feng et al., 2014).

3. Data

a. Observations

Observation datasets employed in this study include daily

wind and sea level pressure (SLP) fields from National Centers

for Environmental Prediction-National Center for Atmospheric

Research (NCEP/NCAR) reanalysis data for the period 1948-

2015, gridded at 2.5o × 2.5o resolution (Kalnay et al., 1996).

b. Description of the model and retrospective forecast

Daily wind and SLP fields from historical weather forecast

datasets were generated with the 2012 version of NCEP’s

Global Ensemble Forecasting System. This reforecast version

2 dataset consists of an 11-member ensemble of forecasts,

produced every day from 0000 UTC initial conditions from

December 1984 to present (available online at www.esrl.noaa.

gov/psd/forecasts/reforecast2/). The horizontal resolution of

GEFS is T254 (about 50 km) out to 8 days, and T190 (about

70 km) from 8 to 16 days, and real-time forecasts are ongoing.

For additional details on the GEFS, see Hamill et al. (2011a).

c. Monsoon indices

The EASM has complex spatial and temporal structures, and

is influenced by variability originating in the tropics and mid-

high latitudes (e.g., Chen and Chang, 1980; Huang and Lu,

1989; Wu et al., 2000; Enomoto et al., 2003; Ding, 2004;

Ninomiya, 2004; He et al., 2006; Wu et al., 2006). The EASM

has more complicated rainfall structures than the Indian summer

monsoon, which results in difficulties in representing EASM

strength using rainfall data. Consequently, large-scale winds

are preferred for defining the broad-scale monsoon charac-

teristics, meaning that most investigators define a simple

EASM index using circulation parameters instead of rainfall.

At least 25 circulation indices have been proposed to measure

EASM intensity (Wang et al., 2008). Unfortunately, the repre-

sentation of EASM circulation strength remains controversial.

Therefore, considering that it is difficult to measure variability

in EASM intensity with one index alone, six commonly used

EASM indices belonging to three categories of monsoon

circulation are employed in this study, as follows (Table 1).

The first category uses the SLP gradient between land and

sea to represent the east-west thermal contrast in EA. Shi and

Zhu (1996; hereafter I-SZ) used the average SLP difference

from 20oN to 50oN between 110oE (Part I) and 160oE (Part II)

to represent monsoon strength. The index defined by Zhao and

Zhou (2005; hereafter I-ZZ) is similar to the I-SZ, but the

region is located at (30o-40oN, 160oE) (Part I) and (40o-50oN,

110oE) (Part II).

The second category is a zonal wind shear index that

employs the north-south shear of zonal winds to express

EASM variability. Wang and Fan (1999; hereafter I-WF) used

the area-average 850-hPa zonal wind (U
850
) over (5o-15oN, 90o-

130oE) (Part I) minus the area-average U
850
 over (22.5o-32.5oN,

110o-140oE) (Part II) to define EASM intensity indices. Zhang

et al. (2003; hereafter I-ZTC) applied a similar vorticity index,

defined as the area-averaged zonal wind anomaly shear bet-

ween (10o-20oN, 100o-150oE) (Part I) and (25o-35oN, 100o-

150oE) (Part II) to measure monsoon strength. Lau et al. (2000;

hereafter I-LKY) used the area-averaged 200-hPa zonal wind

(U
200
) difference between (40o-50oN, 110o-150oE) (Part I) and

(25o-35oN, 110o-150oE) (Part II) to measure variations in the

upper-tropospheric westerly jet stream associated with the

EASM.

The third category is the meridional wind shear index that

employs the north-south shear of meridional wind to measure

variability in the EASM. For example, Wang et al. (2001;

hereafter I-WYF) applied an area-average 850-hPa meridional

wind (V850) anomaly shear between (20
o-30oN, 110o-140oE)

(Part I) and (30o-40oN, 110o-140oE) (Part II) to measure the

converging wind component of the EASM.

Table 1. Description of three categories of EASM circulation indices.
All indices are composed of two parts (Part I and Part II) and can thus
be defined as follows: Index = Part I − Part II.

Index Part I Part II

I-SZ SLP(20o-50oN, 110oE) SLP((20o-50oN, 160oE)

I-ZZ SLP(30o-40oN, 160oE) SLP(40o-50oN, 110oE)

I-WF U
850
(5o-15oN, 90o-130oE) U

850
(22.5o-32.5oN, 110o-140oE)

I-ZTC U
850
(10o-20oN, 100o-150oE) U

850
(25o-35oN, 100o-150oE)

I-LKY U
200
(40o-50oN, 110o-150oE) U

200
(25o-35oN, 110o-150oE)

I-WYF V
850
(20o-30oN, 110o-140oE) V

850
(30o-40oN, 110o-140oE)



4 ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES

Daily monsoon intensity indices were used to measure

variability in the EASM on a synoptic timescale. These indices

are based on traditional definitions of EASM indices, but are

calculated with daily rather than monthly data. The forecast

skill of NCEP’s GEFS historical weather forecast is measured

by the temporal correlation coefficient (TCC) skill. The TCC

skill was obtained from correlation coefficients between EASM

indices calculated from the NCEP reanalysis dataset and from

NCEP’s GEFS historical weather forecast dataset. Higher

correlation coefficients indicate a higher GEFS prediction skill.

4. Predictability of EASM indices at a synoptic time-
scale from observations

Using daily EASM indices for June-September (JJAS), the

NLLE approach was applied to obtain the mean RGIE of six

EASM indices (Fig. 1). The mean RGIE of all six EASM

indices increases quickly initially, then slows and finally reaches

saturation level. These processes represent linear fast growth,

nonlinear slow growth, and saturation phases of the mean error

in a chaotic system, respectively (Ding et al., 2008, 2016). In

comparison, the mean RGIE of daily EASM indices defined

by SLP difference (I-SZ and I-ZZ) and meridional wind shear

(I-WYF) show faster growth than those from indices defined

by zonal wind shear (I-WF, I-ZTC, and I-LKY).

The predictability limits of daily EASM indices can be

quantitatively determined using the saturation value, given fact

that most of information is lost from the initial state when the

error growth reaches saturation (Ding and Li, 2008a, 2011).

Figure 2 shows that daily EASM indices defined by zonal wind

shear (I-WF, I-ZTC, and I-LKY) have a common predict-

ability limit of around 7 days, which is higher than the limit of

daily EASM indices defined by SLP difference (I-SZ and I-

ZZ) and meridional wind shear (I-WYF) of about 5 days. This

suggests that the daily variability of EASM indices represented

Fig. 1. Mean error growth for six daily EASM indices based on
observation for the period 1948-2015: (a) I-SZ, (b) I-ZZ, (c) I-WF,
(d) I-ZTC, (e) I-LKY, and (f) I-WYF, as obtained using the NLLE
method. The dashed line represents the 95% level of the saturation
value obtained by taking the average of the mean error growth after
10 days.

Fig. 2. Predictability limits of the six daily EASM indices based on
observation for the period 1948-2015. The red bar indicates the
predictability limit of the indices defined by SLP difference (I-SZ
and I-ZZ), the blue bar represents the predictability limit of indices
defined by zonal wind shear (I-WF, I-ZTC, and I-LKY), and the
black bar denotes the predictability limit of indices defined by
meridional wind shear (I-WYF).

Fig. 3. Autocorrelations of the six daily EASM indices based on
observation for the period 1948-2015: (a) I-SZ, (b) I-ZZ, (c) I-WF,
(d) I-ZTC, (e) I-LKY, and (f) I-WYF. The horizontal dashed line
denotes the 95% significance level.
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by zonal wind shear (I-WF, I-ZTC, and I-LKY) may be more

predictable than those represented by SLP difference (I-SZ and

I-ZZ) and meridional wind shear (I-WYF). These results are

generally consistent with the findings of Zhou and Zou (2010),

who examined seasonal predictability of two commonly used

EASM strength indices and revealed that the EASM index

derived from zonal wind shear is more predictable than the

index derived from SLP difference.

Atmospheric persistence represents the inherent long initial

condition memory of the atmosphere (e.g., Reichler and

Roads, 2004; Ding et al., 2008). Generally speaking, a long

persistence is favorable for high predictability. Therefore, we

further explore the daily persistence of various EASM indices

with the aim of testing whether the predictability of various

EASM indices is closely related to their persistence. The

persistence of the EASM index is measured by the lag time (in

days) for the autocorrelation of the daily EASM index to reach

a significance level of 0.05 (e.g., Trenberth, 1985; Reichler and

Roads, 2004). Daily EASM indices defined by SLP difference

(I-SZ and I-ZZ) and meridional wind shear (I-WYF) exhibit

relatively low persistence (about 2 days), while daily EASM

indices defined by zonal wind shear (I-WF, I-ZTC, and I-

LKY) exhibit relatively high persistence (about 3 days) (Fig.

3). These persistence results suggest that EASM indices

defined by zonal wind shear (I-WF, I-ZTC, and I-LKY) tend to

be more predictable than EASM indices defined by SLP

difference (I-SZ and I-ZZ) and meridional wind shear (I-

WYF). This finding is consistent with the predictability results

shown above.

To understand the possible reasons why different EASM

indices have varying predictability limits, we investigate the

spatial distribution of the summer mean predictability limit of

daily SLP, 850-hPa zonal wind, 200-hPa zonal wind, and 850-

hPa meridional wind fields over EA (0o-60oN, 90o-180oE) (Fig.

4). The predictability limit of daily SLP shows a zonal

distribution over EA, with a relatively high predictability limit

Fig. 4. Spatial distribution of the summer mean predictability limit (in days) in EA of: (a) daily SLP from I-SZ, (b) daily zonal wind at
850-hPa from I-WF, (c) daily zonal wind at 200-hPa from I-LKY, and (d) daily meridional wind shear at 850-hPa from I-WYF for the
period 1948-2015. In all cases the red and blue boxes delineate Part I and II of each index, respectively.
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(about 6-8 days) over low-latitudes across EA (south of 30oN)

and a relatively low predictability limit (about 4-6 days) over

mid-high latitudes across EA (north of 30oN). The predict-

ability limit of daily 850-hPa zonal wind also shows a zonal

distribution over EA, with values decreasing from low-latitudes

to mid-high latitudes across EA. The predictability limit of

daily 200-hPa zonal wind is larger over most parts of Asian

continent (about 6-8 days) compared with oceanic regions

around EA (about 5-7 days). Compared with the previous three

fields, the predictability limit of daily 850-hPa meridional

wind is small (only 4-6 days) over most regions of EA,

suggesting that the meridional wind field is the most un-

predictable of all four fields over EA.

We note that the predictability limit of daily SLP over the

area 20o-50oN, 110oE (Part I of the I-SZ) (about 4-7 days) is

lower than that of 850-hPa zonal wind over the area 5o-15oN,

90o-130oE (Part I of the I-WF) (about 6-9 days) (Figs. 4a, b).

Also, SLP over the area 20o-50oN, 160oE (Part II of the I-SZ)

shows a lower predictability limit (about 4-6 days) than 850-

hPa zonal wind over the area 22.5o-32.5oN, 110o-140oE (Part II

of the I-WF) (about 5-7 days) (Figs. 4a, b).

The error growth of both Part I and II of the daily EASM

index defined by SLP difference (I-SZ) is consistently faster

than that for Part I and II of the index defined by zonal wind

shear (I-WF) (not shown). As a result of the combined role of

Part I and II in daily EASM indices, the predictability limit of

the I-SZ is relatively low compared with the I-WF. In addition,

the predictability limit of 850-hPa meridional wind is signifi-

cantly lower than that of 850-hPa zonal wind over most

regions of EA (Figs. 4b, d). The predictability limit of both

parts of the EASM index defined by meridional wind shear (I-

WYF) is lower than that for the index defined by zonal wind

shear (I-WF) (Fig. 5). As a result, the index defined by zonal

wind shear (I-WF) tends to be more predictable than the index

defined by meridional wind shear (I-WYF).

We also examined the time series of the six EASM indices

(Fig. 6). Note that EASM indices defined by SLP difference (I-

SZ and I-ZZ) and meridional wind shear (I-WYF) exhibit

more high-frequency daily fluctuations than indices defined by

zonal wind shear (I-WF, I-ZTC, and I-LKY). The power

spectra of different EASM indices reveal that variations in

three monsoon indices defined by zonal wind shear (I-WF, I-

ZTC, and I-LKY) appear to be concentrated at relatively long

periods (> 10 days), whereas indices defined by SLP difference

and meridional wind shear (I-SZ, I-ZZ, and I-WYF) occur

mostly at higher frequencies, with periods of 5-8 days (Fig. 7).

The high-frequency fluctuations of the I-SZ, I-ZZ, and I-WYF

are expected to be more difficult to predict than low-frequency

fluctuations of the I-WF, I-ZTC, and I-LKY. Shukla (1981)

found that the lack of predictability is due mainly to the

instabilities of synoptic-scale disturbances. High instability

means low predictability. High-frequency fluctuation represents

relative high instability, while low-frequency fluctuation repre-

sents relative low instability. This may explain why daily

EASM indices defined by zonal wind shear (I-WF, I-ZTC, and

I-LKY) have a higher predictability limit than indices defined

by SLP difference (I-SZ and I-ZZ) and meridional wind shear

(I-WYF). In addition, these results are generally consistent

with the results of Ding et al. (2011), who examined the

predictability limits of two commonly used winter MJO

strength indices, and revealed that the low-frequency MJO

Fig. 6. Six different daily monsoon indices (solid line): (a) I-SZ, (b)
I-ZZ, (c) I-WF, (d) I-ZTC, (e) I-LKY, and (f) I-WYF from 1 June
1948 to 30 September 1948. The annual cycle and linear trend of
the indices have been removed.

Fig. 5. Predictability limits of Part I and II of the six daily EASM
indices based on observation for the period 1948-2015. The red bar
indicates the limit of Part I, and the blue bar indicates the limit of
Part II.
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index (5 day moving average of daily index) is more predict-

able (25 days) than the high-frequency daily index (18 days). 

5. Synoptic-scale forecast skill of EASM indices in
weather forecast models’

The 31-year mean (1985-2015) TCC skill from six EASM

indices in NCEP’s GEFS historical weather forecast were used

to assess whether different EASM indices have different

forecast skills in weather forecast models (Fig. 8). The TCC

skill of all six EASM indices decreases with forecast lead time.

In comparison, the TCC skills of EASM indices defined by

zonal wind shear (I-WF, I-ZTC, and I-LKY) are clearly higher

than those defined by SLP difference (I-SZ and I-ZZ) and

meridional wind shear (I-WYF). This suggests that the GEFS

has a higher forecast skill for predicting indices defined by

zonal wind shear than those defined by SLP difference and

meridional wind shear.

Results based on observations for the period of 1985-2015

are consistent with results for the period of 1948-2015 (not

shown). These findings in GEFS are consistent with results

from observations presented above, and provide further

evidence that EASM indices defined by zonal wind shear tend

to be more predictable than indices defined by SLP difference

and meridional wind shear. In addition, we note that EASM

indices defined by SLP difference (I-SZ and I-ZZ) and me-

ridional wind shear (I-WYF) have a similar predictability limit

(about 5 days) in observations (Fig. 2). However, the forecast

skill of the I-WYF is lower than that of the I-SZ and I-ZZ in

the GEFS, which is different from the results obtained from

observations.

Figure 9 shows the time evolution of the absolute errors of

six daily EASM indices in the GEFS, obtained from the

difference between NCEP reanalysis and GEFS historical

Fig. 7. Power spectral analysis of the daily vatiations of six daily
EASM indices (solid line). The dotted line denotes 95% sig-
nificance and the dashed line indicates the red noise line.

Fig. 8. TCC skills for six daily EASM indices averaged for 31 years
from 1985-2015, obtained from the NCEP reanalysis dataset and
the NCEP GEFS historical weather forecast dataset. The red, blue,
and black lines represent the TCC skill of the indices defined by
SLP difference (I-SZ and I-ZZ), zonal wind shear (I-WF, I-ZTC,
and I-LKY), and meridional wind shear (I-WYF), respectively.

Fig. 9. Time evolution of the absolute errors of six daily EASM
intensity indices obtained from the NCEP reanalysis dataset and the
NCEP GEFS historical weather forecast dataset. The red, blue, and
black lines represent the absolute errors of the indices defined by
SLP difference (I-SZ and I-ZZ), zonal wind shear (I-WF, I-ZTC,
and I-LKY), and meridional wind shear (I-WYF), respectively.
Units of the indices have been removed.
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weather forecasts. The absolute errors of daily EASM indices

defined by SLP difference (I-SZ and I-ZZ) and meridional

wind shear (I-WYF) exhibit faster growth than those of indices

define by zonal wind shear (I-WF, I-ZTC, and I-LKY). These

results are consistent with conclusions derived from the data in

Figs. 2 and 8, and further confirm the existence of differences

between the predictabilities of various EASM indices. In

addition, we note that the initial error of the daily EASM index

defined by meridional wind shear (I-WYF) is high compared

with that of other indices. This may explain why the forecast

skill of the I-WYF is lowest among all six EASM indices in

the GEFS.

In order to compare the predictability limit measured by

NLLE with limit of forecast skill by GEFS, we estimate

predictability limit of daily EASM indices in GEFS by using

the 95% level of the saturation value of forecast error. The

result shows that EASM indices defined by zonal wind shear

have a predictability limit of around 10 days, which is higher

than the predictability limit of EASM indices defined by SLP

difference and meridional wind shear (about 8 days). This

result is consistent with observational result. However, the

predictability limit estimated by NLLE method is shorter than

that in the GEFS. 

We give some discussions of the possible reasons why the

estimated predictability limit by the NLLE method is under-

estimated. First, the atmospheric and oceanic predictability

depends not only on initial condition, but also on the slowly

varying boundary conditions. However, the predictability of

daily EASM indices obtained from the NLLE method mainly

comes from the initial information, without including the

predictability coming from slowly varying boundary condition.

As a result, the estimated predictability of daily EASM indices

by the NLLE method is shorter than the prediction skill by

numerical models. Second, the NLLE method estimates the

atmospheric and oceanic predictability by searching for the

analogs from the observational time series. Nonetheless, it

should be noted that if the number of observational points is

not enough to find good analogs, the estimated predictability

limit by the NLLE method would be underestimated. 

Although the observational time series of daily EASM indices

available cover periods of 68 years, it is likely to be not

enough to find good analogues. Some false analogs are

inevitably found in the observational time series of daily

EASM indices, thereby leading to large initial errors that

reduce the estimated predictability limit. This is one limitation

of the NLLE method if we have only a relatively short period

of observational data (Li and Ding, 2013).

Previous studies indicate that the seasonal predictability of

the EASM shows significant interannual variation from the

1980s to 2000s (Yang et al., 2012). The JJAS-average TCC

skill of different daily EASM indices also shows significant

interannual variations from 1985 to 2015 in the GEFS (Fig.

10), which is similar to the seasonal predictability reported by

Yang et al. (2012). For the same EASM index, the TCC skill

shows largely consistent interannual fluctuations for different

lead times. For example, for the I-SZ index, the correlation

coefficients between the TCC skill for time series at lead times

of 3 and 6 days and between the TCC skill for time series at

lead times of 6 and 9 days are 0.65 and 0.85, respectively.

For a given lead time, the TCC skills of different types of

EASM indices do not show coherent interannual fluctuations.

For example, for a lead time of 6 days TCC skill for time

series in the I-SZ and I-WF only have a correlation coefficient

of −0.088 (Table 2). This suggests that the mechanisms re-

sponsible for interannual fluctuations of TCC skill for different

types of daily EASM indices may be different.

It is generally accepted that the decadal changes of

Fig. 10. TCC skills of six daily EASM indices for 31 years from
1985 to 2015 obtained from the NCEP reanalysis dataset and the
NCEP GEFS historical weather forecast dataset. The red, blue, and
green lines represent the TCC skill for forecast leads of 3, 6, and 9
days, respectively.

Table 2. Correlation coefficients of TCC time series for six daily
EASM indices with a 6-day forecast lead from 1985 to 2015.
*Correlation is significant at the 95% level. 

Correlation I-SZ I-ZZ I-WF I-ZTC I-LKY I-WYF

I-SZ 1 0.516* −0.088 00.209 −0.013 00.034

I-ZZ 1 −0.089 −0.145 00.029 00.216

I-WF 1 00.464* −0.288 −0.240

I-ZTC 1 −0.280 −0.024

I-LKY 1 00.26

I-WYF 1
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atmospheric predictability of monthly and seasonal means are

generally associated with changes of external forcing, while

the decadal changes of weather predictability are related to the

changes of internal dynamics variability of the atmosphere

(Ding et al., 2008). However, the changes of atmospheric

general circulation and external forcing could modulate the

dynamics of atmospheric internal variability, and in turn may

change the atmospheric persistence and predictability. There-

fore, we examine whether changes in the forecast skill of daily

EASM indices are related to those of external forcing (such as

SST). Figure 11 shows the correlations of TCC skill for time

series of six daily EASM indices with the previous winter

December-February (DJF) SST anomalies. There are signifi-

cant SST signals in the North Pacific or tropical oceans for all

six EASM indices. This suggests that changes in these SST

signals may be related to interannual fluctuations of the

forecast skill of daily EASM indices. However, the physical

mechanisms responsible for the link between these SST

signals and the forecast skill of daily EASM indices remain

explained. Further research is necessary to examine the

respective influences of these SST signals on the TCC skill of

various EASM indices.

6. Summary and discussion

Based on the NLLE method, the predictability limit of daily

Fig. 11. Spatial distributions of correlations of the TCC time series with the previous winter (DJF) SST anomalies. In (a)-(f), shaded
areas indicate correlations significant at the 90% level.
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EASM indices at a synoptic timescale are quantitatively deter-

mined using the daily reanalysis dataset from NCEP. The

results show that the predictability limits of EASM indices

vary widely with the definition of the index. EASM indices

defined by zonal wind shear have a limit of around 7 days,

which is higher than the predictability limit of EASM indices

defined by SLP difference and meridional wind shear (about 5

days). The initial errors of EASM indices defined by SLP

difference and meridional wind shear show relatively rapid

growth, while the initial errors of indices defined by zonal

wind shear show relatively slow growth. The persistence of

these results suggests that EASM indices defined by zonal

wind shear tend to be more predictable than EASM indices

defined by SLP difference and meridional wind shear. This

finding is consistent with predictability results. Further analysis

indicates that indices defined by zonal wind shear appear to

fluctuate at relatively low frequencies, whereas indices defined

by SLP difference and meridional wind shear occur mostly at

higher frequencies. This result may explain why daily EASM

indices defined by zonal wind shear have a higher pre-

dictability limit than indices defined by SLP difference and

meridional wind shear.

By examining TCCs between EASM indices calculated

from the NCEP reanalysis dataset and those from NCEP’s

GEFS historical weather forecast dataset, we found that the

GEFS has a higher forecast skill in predicting EASM indices

defined by zonal wind shear than indices defined by SLP

difference and meridional wind shear. This finding is con-

sistent with results from observations. Moreover, JJAS-average

TCC skills for different daily EASM indices show significant

interannual variations from 1985 to 2015 in the GEFS.

However, the TCC skill of different types of EASM indices

shows different interannual fluctuations.

The estimated predictability of daily EASM indices by the

NLLE method is shorter than the prediction skill by numerical

models. Although the predictability limit of daily EASM

indices based on the NLLE method may be underestimated in

the present study, the differences in the predictability limit of

various EASM indices could be realistic. Results from nu-

merical models indicate that daily EASM indices defined by

zonal wind shear (I-WF, I-ZTC, and I-LKY) have a higher

forecast skill than indices defined by SLP difference (I-SZ and

I-ZZ) and meridional wind shear (I-WYF), which is consistent

with observational results. In addition, the predictability of

daily EASM indices measured by NLLE method can provide a

baseline for the prediction skill of numerical models.

In this study, we used daily indices defined by circulation

instead of precipitation due to the fact that unlike circulation

variables (such as SLP or winds), the daily precipitation is not

continuous. It is difficult to calculate the NLLE by using daily

precipitation. Therefore, this study does not give the analysis

of the predictability limit of indices defined by precipitation.

However, the EASM index defined by air mass (Seo et al.,

2015; hereafter I-SSLP), which is measured by meridional

gradient of equivalent temperature, is a good supplement in

this study. Figure 12 shows that daily EASM index defined by

air mass has a predictability limit of about 7 days, which is

close to the limit of the indices defined by zonal wind shear (I-

WF, I-ZTC, and I-LKY) but higher than the limit of daily

EASM indices defined by SLP difference (I-SZ and I-ZZ) and

meridional wind shear (I-WYF) of about 5 days. Persistence,

power spectral analysis and model forecasts of daily I-SSLP

are also consistent with the results of indices defined by zonal

wind shear (not shown).

Variabilities of 5-day moving average of daily EASM

circulation indices are closely linked to the onset and retreat of

the EASM. Figure 13 shows that the 5-day moving average of

various EASM indices has a similar predictability limit of about

13 days. This is different from the results of daily indices in

which different types of EASM monsoon indices show

different predictability. Persistence and power spectral analyses

are also support the results of the predictability (not shown).

It should be noted that we only used NCEP/NCAR reanalysis

datasets to calculate the predictability limits of EASM indices

at a synoptic timescale. Previous studies have shown that the

NCEP/NCAR reanalysis dataset has errors or uncertainties in

some regions due to missing observations (eg., Kistler et al.,

2001; Inoue and Matsumoto, 2004). Further work should

compare the results of the predictability of the daily EASM

indices obtained using NCEP reanalysis with those using other

reanalysis or observational datasets. In addition, our results

show that interannual variabilities in the TCC skill of daily

EASM indices are complex. Different daily EASM indices,

which reflect different variability in daily EASM strength,

have different TCC skills. It is difficult to fully explain the

interannual changes in the TCC skill of EASM indices at a

synoptic timescale. Therefore, the mechanisms that determine

the interannual variability in TCC skill for the EASM at a

synoptic timescale require further study.

Fig. 12. Mean error growth for the daily EASM index based on
observation for the period 1948-2015: I-SSLP, as obtained using the
NLLE method. The dashed line represents the 95% level of the
saturation value obtained by taking the average of the mean error
growth after 10 days.



31 May 2017 Shucong Ai et al. 11

Acknowledgements. This work was funded by the National

Key Technology Support Program (2015BAC03B07), the

National Natural Science Foundation of China for Excellent

Young Scholars (41522502), the 973 project of China (2016-

YFA0601801), the China Special Fund for Meteorological

Research in the Public Interest (GYHY201506013) and the

Sichuan Youth Fund (2014JQ0019).

APPENDIX A

An algorithm for NLLE estimation from observational data

If we obtain the experimental data of a single variable x of

an n-dimensional chaotic system, or observe the atmospheric

or oceanic data of variable x at one point of n spatial grid

points (e.g., the time series of x is given by {x(ti), i = 0,1,2,

……,m−1} where m represents the length of the time series),

an algorithm that allows an estimation of the mean NLLE from

the experimental or observational time series of variable x is as

follows.

Step 1. Taking x(t
0
) as the reference point at time t

0
, we first

seek the local dynamical analog (LDA) x(tk) of the reference

point from the raw series. Two distances (i.e., the initial

distance between two points and the evolutionary distance

between their trajectories within a short initial period) are used

to measure the degree of similarity between the points. All

points x(tj) (|tj−t0| > tD, where tD is the time taken for auto-

correlations of variable x to drop to around 0.0, ensuring that a

good analog pair is not merely due to persistence) in the raw

series form a set S. The initial distance di between the points

x(t
0
) and x(tj) is given by

.  (A1)

We assume that the evolutions of the two points are analo-

gous over a very short time τ, which is referred to as the initial

evolutionary interval, if they are analogous at the initial time.

The choice of the initial evolutionary interval τ depends on the

persistence of variable x; if the persistence is low, the time over

which two initially close points remain analogous is relatively

short. The time taken for autocorrelations of variable x to drop

to 0.9 can be regarded as a rough estimate of the initial

evolutionary interval τ. A high value (0.9) of autocor-

relation is chosen to ensure a short initial evolutionary interval

(the results were found to be insensitive to the selected value).

Within the initial evolutionary interval τ (τ = KΔ, where Δ is

the sampling interval of the time series (i.e., Δ = ti−ti−1) and K is

the number of sampling intervals over the initial evolutionary

interval), the evolutionary distance de between the two points

x(t
0
) and x(tj) is given by:

. (A2)

Here, di is the amount of the initial separation between the two

points x(t
0
) and x(tj), while de is the evolutionary distance

between their trajectories over the initial evolutionary interval.

The total distance dt, considering not only the initial distance

but also the evolutionary distance, is found by adding di and de:

dt = di + de. (A3)

If dt is very small, it is highly likely that the points x(t0) and

x(tj) are LDA points at the initial time. Of course, this approach

is unlikely to exclude the possibility that only the variable x

and its most relevant variables remain close, whereas other

variables evolve very differently over time, especially for high-

dimensional dynamical systems. Therefore, the analogs based

on variable x are only local analogs, and they cannot simply be

considered as global analogs. The constraint of the total

distance dt, which contains both initial information and evolu-

tionary information over an initial evolutionary, allows us to

exclude a large portion of all points with large initial distances,

thereby helping us to find a truly local analog for the reference

point.

For every point x(tj) in the set S, the value of dt can be

determined. The nearest neighbor (LDA) x(tk) of the reference

point x(t
0
) can be chosen from the set S only if dt is the

minimum. Then, the initial distance between x(t
0
) and x(tk) is

denoted as follows:

. (A4)

di x t0( ) x tj( )–=

de

1

K 1+
----------- x ti( ) x tj i+( )–[ ]

2

i 0=

K

∑=

L1 t0( ) x t0( ) x tk( )–=

Fig. 13. Mean error growth for 5-day moving average of daily
EASM circulation indices based on observation for the period 1948-
2015: (a) I-SZ, (b) I-ZZ, (c) I-WF, (d) I-ZTC, (e) I-LKY, and (f) I-
WYF, as obtained using the NLLE method. The dashed line
represents the 95% level of the saturation value obtained by taking
the average of the mean error growth after 10 days.
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Step 2. At time τi = i × Δ (i = 1, 2, 3, ......, M, where M is the

total number of evolutionary steps), x(t
0
) will have evolved to

x(t
0
+ τi) along the reference trajectory, and x(tk) will have

evolved into x(tk + τi) along the analogous trajectory. The

initial difference L
1
(τ

0
) will have become:

. (A5)

The growth rate of the initial error during the evolutionary

interval (τi) is:

, (i = 1, 2, 3, ......, M). (A6)

With i gradually increasing, we can obtain the variation of

ξ
1
(τi) as a function of the evolution time τi (i = 1, 2, 3, ......, M).

Step 3. Taking x(t
1
) as the reference state and evolution time

τi = i × Δ (i = 1, 2, 3, ......, M), and repeating Steps 1 and 2

above, we obtain the error growth rate ξ
2
(τi) as a function of

the evolution time τi :

,

where L
2
(0) is the initial distance between the reference point

x(t
1
) and its LDA, and L

2
(τi) is the evolution of L2

(0) with time

τi.

Step 4. The above procedure is repeated until the trajectory

reaches the last reference point x(tm−M−1
), and we have error

growth rates at all reference points {x(t
0
), x(t

1
), ......, x(tm−M−1

)}

given by:

, (k = 1, ......, N); i = 1, 2, 3, ......, M)

where N = m −M is the total number of reference points on the

reference trajectory, τi = i × Δ (i = 1, 2, 3, ......, M) is the

evolution time, Lk(0) is the initial distance between the re-

ference point x(tk) and its LDA, and Lk(τi) is the evolution of

Lk(0) with the time τi. It follows that the average of error

growth rates at all reference points is:

.

That is:

. (A7)

Step 5. Observing that the right-hand-side of Eq. (A7) is the

geometric mean of the relative growth of initial error (RGIE)

of all reference points, we obtained the approximation of the

mean RGIE: 

, (i = 1, 2, 3, ......, M). (A8)

By investigating the evolution of  with increasing τi,

we can estimate the mean predictability limit of the variable x.
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